2 The Dirichlet process , related priors and posterior asymptotics
نویسنده
چکیده
Here we review the role of the Dirichlet process and related prior distribtions in nonparametric Bayesian inference. We discuss construction and various properties of the Dirichlet process. We then review the asymptotic properties of posterior distributions. Starting with the definition of posterior consistency and examples of inconsistency, we discuss general theorems which lead to consistency. We then describe the method of calculating posterior convergence rates and briefly outline how such rates can be computed in nonparametric examples. We also discuss the issue of posterior rate adaptation, Bayes factor consistency in model selection and Bernshtěın–von Mises type theorems for nonparametric problems.
منابع مشابه
On Posterior Consistency of Survival Models
Ghosh and Ramamoorthi (1995) studied the posterior consistency for survival models and showed that the posterior was consistent, when the prior on the distribution of survival times was the Dirichlet process prior. In this paper, we study the posterior consistency of survival models with neutral to the right process priors which include Dirichlet process priors. A set of suucient conditions for...
متن کاملA Computational Approach for Full Nonparametric Bayesian Inference Under Dirichlet Process Mixture Models
Widely used parametricgeneralizedlinearmodels are, unfortunately,a somewhat limited class of speci cations. Nonparametric aspects are often introduced to enrich this class, resulting in semiparametricmodels. Focusingon single or k-sample problems,many classical nonparametricapproachesare limited to hypothesis testing.Those that allow estimation are limited to certain functionals of the underly...
متن کاملPosterior Consistency of Species Sampling Priors
Recently there has been increasing interest in species sampling priors, the nonparametric priors defined as the directing random probability measures of the species sampling sequences. In this paper, we show that not all of the species sampling priors produce consistent posteriors. In particular, in the class of Pitman-Yor process priors, the only priors rendering posterior consistency are esse...
متن کاملAn asymptotic analysis of Gibbs-type priors
The Dirichlet process, introduced by T. Ferguson in 1973, is the most famous and successful example of discrete nonparametric prior in Bayesian statistics. Among many desirable features, such process is posterior consistent, that is the posterior distribution accumulates, as the sample size grows to infinity, to a mass point at the “true” distribution, say P0, that has generated the data, whate...
متن کاملPosterior Simulation in Countable Mixture Models for Large Datasets
Mixture models, or convex combinations of a countable number of probability distributions, offer an elegant framework for inference when the population of interest can be subdivided into latent clusters having random characteristics that are heterogeneous between, but homogeneous within, the clusters. Traditionally, the different kinds of mixture models have been motivated and analyzed from ver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009